# **PHILIPP**GROUP

# Threaded transport anchor - long wavy tail



**Installation and Application Instruction** 

# Our products from the division BUILDING SOLUTIONS

#### **SERVICES**

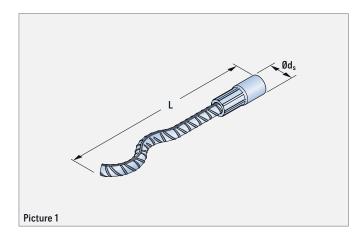
- On-site tests -> we ensure that your requirements are properly covered by our planning.
- >> Test reports -> for your safety and documentation.
- Trainings -> the knowledge of your employees from planning and production is enhanced by our experts on site, online or via webinar.
- » Planning support -> latest design software, planning documents, CAD data and much more can be downloaded any time from www.philipp-group.de.

#### HIGH DEMANDS ON PRODUCT SAFETY AND PRACTICALITY

» Close cooperation with notified bodies and - if necessary approval of our solutions.

#### TECHNICAL DEPARTMENT

Our expert-team will support you at any time during your planning phase with detailed advice.




#### CONTENT

| GENERAL PRODUCT INFORMATION                                 | Page | 4 |
|-------------------------------------------------------------|------|---|
| System description                                          | Page | 4 |
| EC Declaration of Conformity                                | Page | 4 |
| Dimensions                                                  | Page | 4 |
| GENERAL NOTES / ANCHOR SELECTION                            | Page | 5 |
| Materials                                                   | Page | 5 |
| Corrosion                                                   | Page | 5 |
| Element thicknesses. centre and edge distances              | Page | 5 |
| Concrete strength                                           | Page | 5 |
| Selection guide for transport anchors                       | Page | 5 |
| REINFORCEMENT                                               | Page | 6 |
| Minimum reinforcement                                       | Page | 6 |
| Reinforcement instructions for thin elements                | Page | 6 |
| Diagonal and lateral tension                                | Page | 6 |
| PERMISSIBLE LOAD BEARING CAPACITIES AND BOUNDARY CONDITIONS | Page | 7 |
| for axial tension                                           | Page | 7 |
| for diagonal tension                                        | Page | 8 |
| for lateral tension                                         | Page | 9 |

## PHILIPP Threaded transport anchor - long wavy tail

#### **GENERAL PRODUCT INFORMATION**



Axial tension  $(\beta \le 12.5^\circ)$  Axial tension  $(\gamma \le 15.0^\circ)$  Diagonal tension  $(12.5^\circ < \beta \le 45^\circ)$  Lateral tension  $(15^\circ < \gamma \le 90^\circ)$  For thread reach Picture 2

The Threaded transport anchor in the long wavy tail version is part of the PHILIPP Transport anchor system and complies with the VDI/BV-BS Guideline "Lifting inserts and lifting systems for precast concrete elements" (VDI/BV-BS 6205). The use of Threaded transport anchors requires the compliance with this Installation and Application Instruction as well as the General Installation and Application Instruction.

The Application Instructions for the belonging PHILIPP lifting devices as well as the Data Sheets of the belonging PHILIPP accessories must be followed also. The anchor may only be used in combination with the mentioned PHILIPP lifting devices.

Threaded transport anchors are designed for the transport of precast concrete units only. Multiple use within the transport

chain (from production to installation of the unit) means no repeated usage. This Installation and Application Instruction does not specify a repeated usage (e.g. ballasts for cranes) or a permanent fixation.



#### **EC-DECLARATION OF CONFORMITY**

The EC Declaration of Conformity (DoC) of the Threaded transport anchor - long wavy tail can be downloaded from our website www.philipp-group.de or is available on request.



**TABLE 1: DIMENSIONS** 

| Ref. no. ② | Туре        | Dimensions |            |           |           |                         |  |  |  |  |  |
|------------|-------------|------------|------------|-----------|-----------|-------------------------|--|--|--|--|--|
| galvanised |             | RD         | ØD<br>(mm) | L<br>(mm) | e<br>(mm) | Ød <sub>s</sub><br>(mm) |  |  |  |  |  |
| 67M12WE    | <b>1</b> 2  | 12         | 15.0       | 137       | 22        | 8                       |  |  |  |  |  |
| 67M16WE    | <b>1</b> 6  | 16         | 21.0       | 216       | 27        | 12                      |  |  |  |  |  |
| 67M20WE    | 20          | 20         | 27.0       | 257       | 35        | 16                      |  |  |  |  |  |
| 67M24WE    | 24          | 24         | 31.0       | 350       | 43        | 16                      |  |  |  |  |  |
| 67M30WE    | 30          | 30         | 39.5       | 450       | 56        | 20                      |  |  |  |  |  |
| 67M36WE    | 36          | 36         | 47.0       | 570       | 68        | 25                      |  |  |  |  |  |
| 67M42WE    | 42          | 42         | 54.0       | 620       | 75        | 28                      |  |  |  |  |  |
| 67M52WE    | <del></del> | 52         | 67.0       | 750       | 100       | 32                      |  |  |  |  |  |

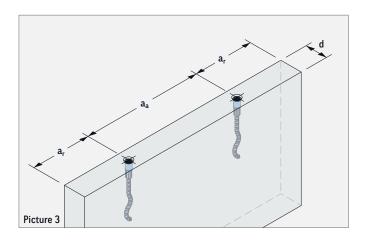
 $<sup>\ \, \</sup>textcircled{1}$  Mind the embedding depth  $h_T$  of the corresponding Recess former and Retaining cap (picture 2).

② Also available in version stainless steel (ref. no. 75M\_\_VAWE).

#### **GENERAL NOTES / ANCHOR SELECTION**

#### **MATERIALS**

The Threaded transport anchors consist of a straight reinforcement bar B500B with crimped-on insert. All threaded inserts are made of special high precision steel tubes and are galvanised according to common standards.


This galvanisation protects the anchor temporarily from the storage at the producer site to the final installation in the concrete element.

#### CORROSION

In order to avoid contamination or damage to the concrete surface of the precast concrete element due to corrosion of the transport anchor (stream of rust or similar), the insert can be delivered in stainless steel alternatively. Here the cut surface of the reinforcement bar is protected by a special sealing against corrosion.

#### **ELEMENT THICKNESSES, CENTRE AND EDGE DISTANCES**

The installation and position of threaded transport anchors in precast concrete elements require minimum element dimensions and centre/edge distances for a safe load transfer.



#### **CONCRETE STRENGTH**

With the time of the first lift of the unit the concrete strength must have a minimum  $f_{\text{cc}}$  according to the tables of the respective load case. Given concrete strengths  $f_{\text{cc}}$  are cube compressive strengths at the time of the first lifting.

#### **SELECTION GUIDE FOR TRANSPORT ANCHOR**

#### STEP 1:

Table 2 shows the maximum possible threaded anchor sizes per element thickness as a function of the load case.


TABLE 2: ELEMENT THICKNESSES AND MAX. ANCHOR SIZES

| Element   | Transport anchor (type)    |                          |                          |                          |  |  |  |  |  |  |  |
|-----------|----------------------------|--------------------------|--------------------------|--------------------------|--|--|--|--|--|--|--|
| thickness | Axial                      | Diag                     | onal                     | Lateral                  |  |  |  |  |  |  |  |
|           | tension                    | tens                     | sion                     | tension                  |  |  |  |  |  |  |  |
| d         | $\beta_{\text{max}}$ 12.5° | $\beta_{\text{max}}$ 30° | $\beta_{\text{max}}$ 45° | $\beta_{\text{max}}$ 45° |  |  |  |  |  |  |  |
| (mm)      | $\gamma_{max}$ 15°         | $\gamma_{max}$ 15°       | $\gamma_{max}$ 15°       | $\gamma_{max}$ 90°       |  |  |  |  |  |  |  |
| 80        | RD 16                      | RD 16                    | RD 16                    | RD 16                    |  |  |  |  |  |  |  |
| 100       | RD 20                      | RD 20                    | RD 20                    | RD 20                    |  |  |  |  |  |  |  |
| 120       | RD 24                      | RD 24                    | RD 24                    | RD 24                    |  |  |  |  |  |  |  |
| 130       | RD 36                      | RD 36                    | KD 24                    | KD 24                    |  |  |  |  |  |  |  |
| 140       | RD 42                      | RD 42                    | RD 30                    | RD 30                    |  |  |  |  |  |  |  |
| 150       |                            |                          | KD 30                    | KD 30                    |  |  |  |  |  |  |  |
| 200       | RD 52                      | RD 52                    | RD 36                    | RD 36                    |  |  |  |  |  |  |  |
| 240       | אט אַנ                     | אט אַ                    | RD 42                    | RD 42                    |  |  |  |  |  |  |  |
| 275       |                            |                          | RD 52                    | RD 52                    |  |  |  |  |  |  |  |

#### STEP 2:

Details of the load bearing capacities and boundary conditions as a function of the concrete compressive strength are given in the following tables.

Axial tension: Table 3 / 4 (15 / 20 N/mm²)
 Diagonal tension: Table 5 / 6 (15 / 20 N/mm²)
 Lateral tension: Table 7 (15 N/mm²)



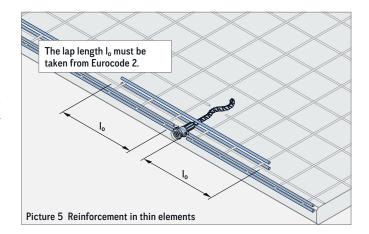
On lateral tension the Threaded transport anchors have only half of the capacity compared to axial loading. However, this is nota limitation as during tilt-up only half of the weight has to be lifted (please refer to the General Installation and Application Instruction).

## PHILIPP Threaded transport anchor - long wavy tail

#### REINFORCEMENT

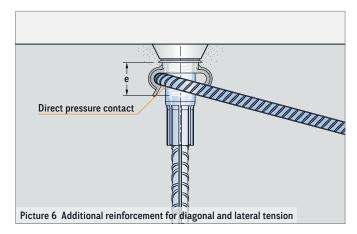
#### MINIMUM REINFORCEMENT

In use of Threaded transport anchors precast units must be reinforced with a minimum reinforcement. Depending on the load case this can differ and is specified in the tables of the respective load case. This minimum reinforcement can be replaced by a comparable steel bar reinforcement. The user is personally responsible for further transmission of load into the concrete unit.


#### REINFORCEMENT INSTRUCTIONS FOR THIN ELEMENTS

In thin elements it might be necessary to cut the longitudinal reinforcement close to the insert (counter brace) in order to have enough concrete cover in this area. Best position for the longitudinal reinforcement should be below the crimping (see picture 5).




#### **EXISTING REINFORCEMENT**

Existing static or constructive reinforcement can be taken into account for the minimum reinforcement of the respective load case.



#### ADD. REINFORCEMENT FOR DIAGONAL AND LATERAL TENSION

Additional reinforcement for diagonal and lateral tension has to be installed with pressure contact to the anchor insert. The position of the direct pressure contact must be within the thread reach e of the insert (see picture 6). By using the Marking ring with clip (ref. no. 74KR\_CLIP) this position is guaranteed.



#### PERMISSIBLE LOAD BEARING CAPACITIES AND BOUNDARY CONDITIONS: AXIAL TENSION

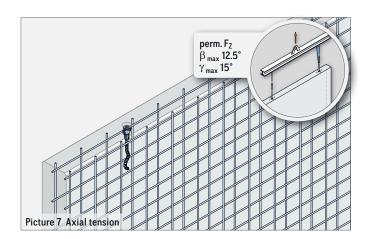
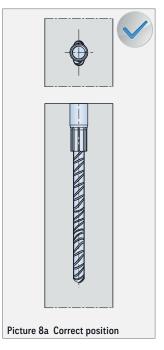
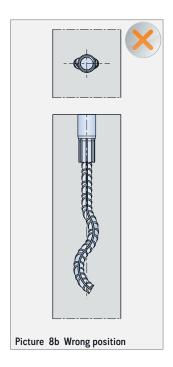



TABLE 3: AXIAL TENSION IF  $f_{CC} \ge 15 \text{ N/mm}^2$ 


| Load  | Eleme    | ent thickne    | esses,         | β <sub>max</sub> 12  | 2.5° / γ <sub>max</sub> 15° |  |  |  |  |  |  |  |
|-------|----------|----------------|----------------|----------------------|-----------------------------|--|--|--|--|--|--|--|
| class | centre a | nd edge d      | istances       | perm. F <sub>Z</sub> | Mesh                        |  |  |  |  |  |  |  |
|       |          |                |                |                      | reinforcement               |  |  |  |  |  |  |  |
|       | d        | a <sub>a</sub> | a <sub>r</sub> |                      | (square)                    |  |  |  |  |  |  |  |
|       | (mm)     | (mm)           | (mm)           | (kN)                 | (mm²/m)                     |  |  |  |  |  |  |  |
| 12    | 60       | 300            | 150            | 5.0                  | 2 × #131                    |  |  |  |  |  |  |  |
| 16    | 80       | 400            | 200            | 12.0                 | 2 × #131                    |  |  |  |  |  |  |  |
| 20    | 100      | 550            | 275            | 20.0                 | 2 × #188                    |  |  |  |  |  |  |  |
| 24    | 120      | 600            | 300            | 25.0                 | 2 × #188                    |  |  |  |  |  |  |  |
| 30    | 140      | 650            | 350            | 40.0                 | 2 × #188                    |  |  |  |  |  |  |  |
| 36    | 200      | 800            | 400            | 63.0                 | 2 × #188                    |  |  |  |  |  |  |  |
| 42    | 240      | 1000           | 500            | 80.0                 | 2 × #188                    |  |  |  |  |  |  |  |
| 52    | 275      | 1200           | 600            | 125.0                | 2 × #188                    |  |  |  |  |  |  |  |


#### TABLE 4: AXIAL TENSION IF $f_{CC} \ge 20 \text{ N/mm}^2$

| Load  | Eleme    | ent thickne    | esses,         | $\beta_{max}$ 12.5° / $\gamma_{max}$ 15° |               |  |  |  |
|-------|----------|----------------|----------------|------------------------------------------|---------------|--|--|--|
| class | centre a | and edgedi     | stances        | perm. F <sub>Z</sub>                     | Mesh          |  |  |  |
|       |          |                |                |                                          | reinforcement |  |  |  |
|       | d        | a <sub>a</sub> | a <sub>r</sub> |                                          | (square)      |  |  |  |
|       | (mm)     | (mm)           | (mm)           | (kN)                                     | (mm²/m)       |  |  |  |
| 36    | 130      | 800            | 400            | 63.0                                     | 2 × #188      |  |  |  |
| 42    | 140      | 1000           | 500            | 80.0                                     | 2 × #188      |  |  |  |
| 52    | 150      | 1200           | 600            | 125.0                                    | 2 × #188      |  |  |  |

#### POSITION OF THE ANCHOR WAVE

When installing the threaded transport anchor, the position of the waved end shall be observed. Make sure that this is positioned parallel to the concrete element surface (picture 8a).





## PHILIPP Threaded transport anchor - long wavy tail

#### PERMISSIBLE LOAD BEARING CAPACITIES AND BOUNDARY CONDITIONS: DIAGONAL TENSION

If the Threaded transport anchor is used under diagonal tension  $\beta$  > 12.5° an additional reinforcement according to table 5 or 6 is required. Here the reinforcement for diagonal tension is placed contrarily to the tensile direction (picture 9) and must have direct pressure contact to the anchor insert in the peak of its bending. The installation of the reinforcement for diagonal tension can be done in an angle of 0° up to 20° to the concrete surface.

With an installation angle of  $0^{\circ}$ , the transport anchor must be installed in a recessed position (e.g. by using a Recess former), as this is the only way to ensure the required concrete cover for the bond.

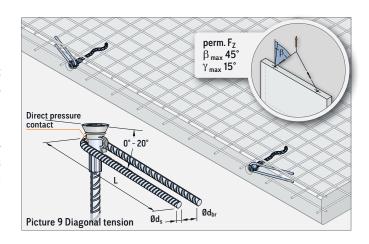
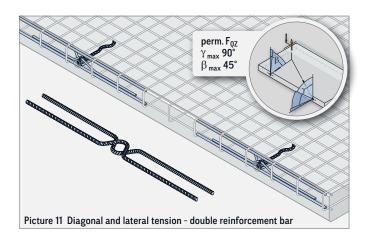
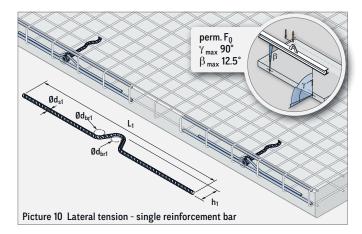



TABLE 5: DIAGONAL TENSION IF f<sub>CC</sub> ≥ 15 N/mm<sup>2</sup>

| Load<br>class |           | Element thicknesses, centre and edge |                        |       | $eta_{max}$ 30° / $\gamma_{max}$ 15° rm. Fz Additional reinforcement |                                         |           |                                         |       | $\beta_{max}  45^{\circ}  /  \gamma_{max}  15^{\circ}$ perm. $F_Z$ Additional reinforcement |                         |           |                          |  |                           |  |
|---------------|-----------|--------------------------------------|------------------------|-------|----------------------------------------------------------------------|-----------------------------------------|-----------|-----------------------------------------|-------|---------------------------------------------------------------------------------------------|-------------------------|-----------|--------------------------|--|---------------------------|--|
|               |           | distances                            |                        |       | Mesh reinforcement                                                   | Add. reinforcement for diagonal tension |           | Add. reinforcement for diagonal tension |       |                                                                                             |                         |           | Mesh reinforcement       |  | reinforcei<br>iagonal tei |  |
|               | d<br>(mm) | a <sub>a</sub><br>(mm)               | a <sub>r</sub><br>(mm) | (kN)  | (square)<br>(mm²/m)                                                  | Ød <sub>s</sub><br>(mm)                 | L<br>(mm) | Ød <sub>br</sub><br>(mm)                | (kN)  | (square)<br>(mm²/m)                                                                         | Ød <sub>s</sub><br>(mm) | L<br>(mm) | Ød <sub>br</sub><br>(mm) |  |                           |  |
| 12            | 60        | 300                                  | 150                    | 5.0   | 2 × #131                                                             | 6                                       | 150       | 24                                      | 5.0   | 2 × #131                                                                                    | 6                       | 150       | 24                       |  |                           |  |
| 16            | 80        | 400                                  | 200                    | 12.0  | 2 × #131                                                             | 6                                       | 250       | 24                                      | 12.0  | 2 × #131                                                                                    | 8                       | 200       | 32                       |  |                           |  |
| 20            | 100       | 550                                  | 275                    | 20.0  | 2 × #188                                                             | 8                                       | 250       | 32                                      | 20.0  | 2 × #188                                                                                    | 8                       | 300       | 32                       |  |                           |  |
| 24            | 120       | 600                                  | 300                    | 25.0  | 2 × #188                                                             | 8                                       | 300       | 32                                      | 25.0  | 2 × #188                                                                                    | 10                      | 300       | 40                       |  |                           |  |
| 30            | 140       | 650                                  | 350                    | 40.0  | 2 × #188                                                             | 10                                      | 350       | 40                                      | 40.0  | 2 × #188                                                                                    | 12                      | 400       | 48                       |  |                           |  |
| 36            | 200       | 800                                  | 400                    | 63.0  | 2 × #188                                                             | 12                                      | 450       | 48                                      | 63.0  | 2 × #188                                                                                    | 14                      | 550       | 56                       |  |                           |  |
| 42            | 240       | 1000                                 | 500                    | 80.0  | 2 × #188                                                             | 14                                      | 600       | 56                                      | 80.0  | 2 × #188                                                                                    | 16                      | 600       | 64                       |  |                           |  |
| 52            | 275       | 1200                                 | 600                    | 125.0 | 2 × #188                                                             | 16                                      | 700       | 67                                      | 125.0 | 2 × #188                                                                                    | 20                      | 750       | 140                      |  |                           |  |

TABLE 6: DIAGONAL TENSION IF f<sub>CC</sub> ≥ 20 N/mm<sup>2</sup>


| Load<br>class |           | ent thickne<br>ntre and ed | ,                      | perm. F <sub>Z</sub> | einforcement                                               |                         |           |                          |  |
|---------------|-----------|----------------------------|------------------------|----------------------|------------------------------------------------------------|-------------------------|-----------|--------------------------|--|
|               |           | distances                  |                        |                      | Mesh Add. reinforcement for diagonal tension reinforcement |                         |           |                          |  |
|               | d<br>(mm) | a <sub>a</sub><br>(mm)     | a <sub>r</sub><br>(mm) | (kN)                 | (square)<br>(mm²/m)                                        | Ød <sub>s</sub><br>(mm) | L<br>(mm) | Ød <sub>br</sub><br>(mm) |  |
| 36            | 130       | 800                        | 400                    | 63.0                 | 2 × #188                                                   | 12                      | 450       | 48                       |  |
| 42            | 140       | 1000                       | 500                    | 80.0                 | 2 × #188                                                   | 14                      | 600       | 56                       |  |
| 52            | 150       | 1200                       | 600                    | 125.0                | 2 × #188                                                   | 16                      | 700       | 67                       |  |


#### PERMISSIBLE LOAD BEARING CAPACITIES AND BOUNDARY CONDITIONS: LATERAL TENSION

If an Threaded transport anchor is loaded by lateral tension with an inclination of  $\gamma > 15^\circ$  an additional reinforcement is required (table 7). The reinforcement for lateral tension can be done as a single reinforcement bar (picture 10), double reinforcement bar (picture 11) or reverse reinforcement bar (picture 12). There must be direct pressure contact between the insert of the transport anchor and the reinforcement in the peak of the bending. The reinforcement for lateral tension is installed in the front side of the wall contrarily to the load direction. Tilting of walls can cause diagonal and lateral tension at the same time (picture 11 and 12).

In this case only the reinforcement for lateral tension is required (reverse reinforcement or double reinforcement bar). The diagonal tension is already covered by using this reinforcement. During mounting the tilt-up or turn-over of a unit requires lateral reinforcement (single reinforcement bar according to picture 10 or reverse reinforcement bar according to picture 12). The double reinforcement bar for lateral tension (picture 11) covers standard lifting directions. With lateral tension the mesh reinforcement according to table 7 must be applied as a double-bended mesh. This double-bended

mesh can be replaced by a comparable steel bar reinforcement. In addition to the double-bended mesh longitudinal reinforcement must be installed as shown in table 7.





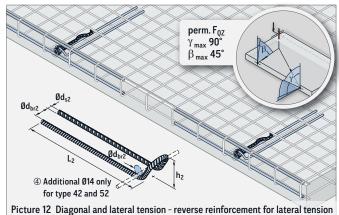



TABLE 7: DIAGONAL TENSION IF f<sub>CC</sub> ≥ 15 N/mm<sup>2</sup>

| Load<br>class | cer       | ent thickno<br>etre and e<br>distances | dge                    | perm. F <sub>QZ</sub> | Mesh<br>reinforcement<br>(square) | γ <sub>max</sub> 90° / β <sub>max</sub> 45° ⑤  Additional reinforcement  Add. reinforcement for lateral tension  Single reinforcement bar  Reverse reinforcement |                     |                        |                           |                          |                     | Longitudinal reinforcement |                           |           |               |
|---------------|-----------|----------------------------------------|------------------------|-----------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|---------------------------|--------------------------|---------------------|----------------------------|---------------------------|-----------|---------------|
|               | d<br>(mm) | a <sub>a</sub><br>(mm)                 | a <sub>r</sub><br>(mm) | (kN)                  | (square)<br>③<br>(mm²/m)          | Ød <sub>s1</sub><br>(mm)                                                                                                                                         | L <sub>1</sub> (mm) | h <sub>1</sub><br>(mm) | Ød <sub>br1</sub><br>(mm) | Ød <sub>s2</sub><br>(mm) | L <sub>2</sub> (mm) | h <sub>2</sub><br>(mm)     | Ød <sub>br2</sub><br>(mm) | Ø<br>(mm) | Länge<br>(mm) |
| 12            | 80        | 300                                    | 150                    | 2.5                   | 2 × #131                          | 6                                                                                                                                                                | 500                 | 49                     | 24                        | 6                        | 270                 | 35                         | 24                        | 10        | 850           |
| 16            | 80        | 400                                    | 200                    | 6.0                   | 2 × #131                          | 8                                                                                                                                                                | 600                 | 49                     | 32                        | 8                        | 420                 | 49                         | 32                        | 10        | 850           |
| 20            | 100       | 550                                    | 275                    | 10.0                  | 2 × #188                          | 10                                                                                                                                                               | 800                 | 64                     | 40                        | 10                       | 490                 | 64                         | 40                        | 12        | 850           |
| 24            | 120       | 600                                    | 300                    | 12.5                  | 2 × #188                          | 12                                                                                                                                                               | 800                 | 75                     | 48                        | 12                       | 520                 | 75                         | 48                        | 12        | 850           |
| 30            | 140       | 650                                    | 350                    | 20.0                  | 2 × #188                          | 12                                                                                                                                                               | 1000                | 92                     | 48                        | 12                       | 570                 | 92                         | 48                        | 16        | 1000          |
| 36            | 200       | 800                                    | 400                    | 31.5                  | 2 × #188                          | 14                                                                                                                                                               | 1000                | 118                    | 56                        | 14                       | 690                 | 118                        | 56                        | 16        | 1000          |
| 42            | 240       | 1000                                   | 500                    | 40.0                  | 2 × #188                          | 16                                                                                                                                                               | 1200                | 143                    | 64                        | 16 <sup>④</sup>          | 830                 | 143                        | 64                        | 16        | 1000          |
| 52            | 275       | 1200                                   | 600                    | 62.5                  | 2 × #188                          | 20                                                                                                                                                               | 1500                | 174                    | 140                       | 20 ④                     | 930                 | 174                        | 140                       | 20        | 1200          |

<sup>3</sup> The mesh reinforcement shall be done as a double-bended mesh or by using similar rebars.

<sup>4</sup> Additional Ø14, length = 600 mm required (see picture 12).

 $<sup>\</sup>textcircled{5}$  With the single reinforcement bar only the force directions  $F_0$  are permissible (see picture 10).

## **PHILIPP**GROUP

#### **HEADQUARTERS**

Lilienthalstraße 7-9 63741 Aschaffenburg

- · +49 6021 40 27-0
- @ info@philipp-gruppe.de

#### PRODUCTION AND LOGISTICS

Hauptstraße 204 63814 Mainaschaff

- · +49 6021 40 27-0
- info@philipp-gruppe.de

#### **OFFICE COSWIG**

Roßlauer Straße 70 06869 Coswig/Anhalt

- · +49 34903 6 94-0
- (a) info@philipp-gruppe.de

#### **OFFICE NEUSS**

Sperberweg 37 41468 Neuss

- · +49 2131 3 59 18-0
- info@philipp-gruppe.de

#### **OFFICE TANNHEIM**

Robert-Bosch-Weg 12 88459 Tannheim / Allgäu

- **4** +49 8395 8 13 35-0
- @ info@philipp-gruppe.de

#### PHILIPP VERTRIEBS GMBH

Pfaffing 36 5760 Saalfelden / Salzburg

- · +43 6582 7 04 01
- @ info@philipp-gruppe.at



**HEADQUARTERS Aschaffenburg** 













www.philipp-group.de